Nonprocessive [2 + 2]e- off-loading reductase domains from mycobacterial nonribosomal peptide synthetases.

نویسندگان

  • Arush Chhabra
  • Asfarul S Haque
  • Ravi Kant Pal
  • Aneesh Goyal
  • Rajkishore Rai
  • Seema Joshi
  • Santosh Panjikar
  • Santosh Pasha
  • Rajan Sankaranarayanan
  • Rajesh S Gokhale
چکیده

In mycobacteria, polyketide synthases and nonribosomal peptide synthetases (NRPSs) produce complex lipidic metabolites by using a thio-template mechanism of catalysis. In this study, we demonstrate that off-loading reductase (R) domain of mycobacterial NRPSs performs two consecutive [2 + 2]e(-) reductions to release thioester-bound lipopeptides as corresponding alcohols, using a nonprocessive mechanism of catalysis. The first crystal structure of an R domain from Mycobacterium tuberculosis NRPS provides strong support to this mechanistic model and suggests that the displacement of intermediate would be required for cofactor recycling. We show that 4e(-) reductases produce alcohols through a committed aldehyde intermediate, and the reduction of this intermediate is at least 10 times more efficient than the thioester-substrate. Structural and biochemical studies also provide evidence for the conformational changes associated with the reductive cycle. Further, we show that the large substrate-binding pocket with a hydrophobic platform accounts for the remarkable substrate promiscuity of these domains. Our studies present an elegant example of the recruitment of a canonical short-chain dehydrogenase/reductase family member as an off-loading domain in the context of assembly-line enzymology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.

BACKGROUND Nonribosomal peptide synthetases (NRPSs) are large multidomain proteins that catalyze the formation of a wide range of biologically active natural products. These megasynthetases contain condensation (C) domains that catalyze peptide bond formation and chain elongation. The natural substrates for C domains are biosynthetic intermediates that are covalently tethered to thiolation (T) ...

متن کامل

Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling.

We describe competitive activity-based protein profiling (ABPP) to accelerate the functional prediction and assessment of adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) in proteomic environments. Using a library of sulfamoyloxy-linked aminoacyl-AMP analogs, the competitive ABPP technique offers a simple and rapid assay system for adenylating enzymes and provides insight int...

متن کامل

Prediction of Monomer Isomery in Florine: A Workflow Dedicated to Nonribosomal Peptide Discovery

Nonribosomal peptides represent a large variety of natural active compounds produced by microorganisms. Due to their specific biosynthesis pathway through large assembly lines called NonRibosomal Peptide Synthetases (NRPSs), they often display complex structures with cycles and branches. Moreover they often contain non proteogenic or modified monomers, such as the D-monomers produced by epimeri...

متن کامل

Dissecting and exploiting nonribosomal peptide synthetases.

A large number of therapeutically useful cyclic and linear peptides of bacteria or fungal origin are synthesized via a template-directed, nucleic-acid-independent nonribosomal mechanism. This process is carried out by mega-enzymes called nonribosomal peptide synthetases (NRPSs). NRPSs contain repeated coordinated groups of active sites called modules, and each module is composed of several doma...

متن کامل

Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases.

We describe a general strategy for selective chemical labeling of individual adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using active site-directed proteomic probes coupled to the 5'-O-N-(aminoacyl)sulfamoyladenosine (AMS) scaffold with a clickable benzophenone functionality. These proteomic tools can greatly facilitate the molecular identification, functional characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 15  شماره 

صفحات  -

تاریخ انتشار 2012